$\begin{aligned} & \text { AOMHOR } \\ & \text { TITLF } \end{aligned}$	Kretke, George L.; Hopkins, Kenneth D.
	User's Guide and Orientation to Canned Computer Programs.
TNS:ITOTION	Colorado Univ.. Soulder. Lab. of Educational Research.
SPONS AgENCY	National Center for Educational Research and Development (DHEW/OE), Washington, D.C.
Pub date	Feb 73
YOTE	32p.: For related documents, see TM 003 967-973
ERRS PRICE	MF-\$0.75 HC-\$1.85 PLOS POSTAGE
DESCRIPTORS	*Autoinstructional Aids: *Computer Prograns:
	*Computer Science Education; *Guides; *programing:
	Researchers: Statistical Analysis

ABSTRACT
fhis handbook is for the student with little or no previon: experience with computer utilization for data processing. Sample proficas to be run on the computer are included. It gives: (1) an overf: $;$ of the sequence of steps from obtaining data to receiving computer untpre. (2) a guide to common computer packages, (3) an illustration of the use of systems cards, (4) discussion and exercises on writing variable format cards, (5) coding considerations, (5) the rationale and illustrations of the use of transgeneration cards, and (7) an appendix of related descriptive materials. The book is designed to ease the transition form a nonuser to user of standard library (canned) computer programs--programs that satisfy most of the researcher's needs. The book is designed for the user who has access to a computer facility that has the BMD and/or other standard library packages. One section of this book is not entirely generalizable to other computer installations since system cards are indiosyncratic. Those employed illustrate the CDC 6400 system at the university of Colorado. (Author/SE)

USER'S GUIDE AND ORIENTATION TO
 CANNF.E COMPUTER PROGRAMS

George L. Kretke
Kenneth D. Hopkins

Laboratory of Educational Research iniversity of Colorado

NCERD Reporting Form - Developmental Products

8. Nome of Product	2. Loberafory or Cenfer	3. Repert Proparation		
User's Guide to Canned				
Computer Programs.			\quad	Laboratory of Educational
:---				
Research, University of				
Colorado	\quad	Date prepared $11 / 9 / 73$		
:---				

4. Problemi dosemiption of the educational problem this preduct designed to solve.

The computer skills required for research and evaluation use are frequently insufficient for functional computer utilization.
5. Sirolagy the generat atrategy selected for the solution of the problen above.

The strategy for this workbook was to give the user the basic minimal knowledge and skills needed for use of canned (library) programs. The workbook was developed for the CDC 6400 system at the University of Colorado, but will serve as a model for workbooks for other installations.
6. Release Date: Appmaimate date prcduc: for release to nert agency.

12/1/73
7. Level of Developmenti Characteriatic level (or projected leval) of devalopment of nroduct at time of relaase. Check one.
x Ready for exitical review and for preparation for Field Test (i.e. prototype materialo) Ready for fiald Test Ready for publisher modi iecation Ready for general dissemination/ diffusion
8. Noxt Agency isenc: to whom frockust in 29 (:r \because i:? he) retzased for fury are develomert lif:Asicr.

NIE
9. Product Descripilon: Describe the following; number each desoription.

- \therefore. Charucteristics of the product. - 1. Aseooiated products, if any.
- 2. How it work.
- s. What it ie intended to do.
- 5. Special conditions, tinw, training,
equipment and/or other requirentente for it use.

Characteristics of the Product:

The workbook gives (1) an overview of the sequence of steps from obtaining data to receiving computer output, (2) a guide to common computer packages, (3) an fllustration of the use of systems cards, (4) discussion and exercises on writing variable format cards, (5) coding considerations, (6) the rationale and illustrations of the use of transgeneration cards, and (7) an appendix of related descriptive materials.

How it Works:
The product is a handbook for the student with little or no previous experience with computer utilization for data processing. Sample problems to be run on the computer are included.

What it is Intended to do:

The product is designed to ease the transition from a non-user to user of standard library (canned) computer programs .-- programs that satisfy most of the researchers needs.

Special Conditions:

The product is designed for the user who has access to a computer facility that has the BMD and/or other standard library packages. One section of the product is not entirely generalizable to other computer installations -- system cards are idiosyncratic. Those employed illustrate the system at the University of Colorado.
10. Product Users, Those individuais or groups expected to use the prciuet.

Individuals with needed but unavailable data processing skills for using statistical library programs.
11. Product Outcomes, The changes in ueer behavier, attitudes, effieiencu, ete. resuitin,: frum pradicet use, ga iupvorted hit dita. Dlease eite relevant aupport ducwmento. If

12. Patential Educational Consequences: 2 scuss not oniy the theoretical (i.e. conceivable) implications of yun sroduct but also the more probabie imfications of dour product, ospecialis over the next decade.

Greater use and more appropriate selection and use of standard computer programs for statistical analyses. Savings in time, effori, and money of unnecessary proliferation of redundant computer programs.

13. Product Elementir Liat the elements which conatitute the product.	14. Origint Circle the most appropriate letter.
One self-contained product with suggested activities,	(D) $M A$
	$D N A$
	$D N A$
	$0 \mu \mathrm{~A}$
	$D M A$
	$D M A$
	$D M A$
	$D N A$
	$D M A$
	$D M A$
	$D N A$
	$D M A$
	$D N A$
	$D M A$
-	$D M A$
	$\begin{aligned} & \text { D= Developed } \\ & M=\text { Modified } \\ & A=\text { Adopted } \end{aligned}$

15. Stant-up Casfs! Tota? expected coats to procure, inatall and initiate use of the product.

Reproduction cost, computer time expenses.

1i. Operating Coataı Projected coste for continuing use of produst after initial adoption and installation (i.e., fees, consunable supplies, apecial staff, training, etc.l.

Reproduction costs, computer time expenses.
17. Likely Markef: What is the likely market for this product? Consider the size and type of the user group; number of possible oubstitute (competitor) products on the market; and the likely availability of funds to purcinase product by (for) the produst user group.

University students in research, evaluation, and statistics courses.

Table of Contents

Orientation to Research Use of Computers 1
Introduction 2
Guide to Computer Program Packages 2
Systems Cards (Program Access) 3
Job Card 5
Account Card 6
How to Call BMD Programs 6
7/8/9 Card 7
Program Cards 7
6/7/8/9 Card. 7
Variable Format Card(s) in BMU Programs 7
Terminology 7
Exercise 9
Miscellaneous Comments 9
Coding 9
Transgeneration 10
Appendix A Index of Programs 12
International Mathematics and Statistical Library. 13
BMD Series 14
IBS Programs 15
Appendix B Delivery Codes 16
Appendix C Program Access 18
Appendix D. 21

The flow chart below illustrates the sequence of activities by the user and the computer in data processing.

Output is delivered to location indicated on job card
\downarrow
User picks
up job

INTRODUCTION

This manual is designed to familiarize the reader with the packaged computer programs available at the University of Colorado and now to gain access to them. No prior technical knowledge of computers is necessary to run many of the programs. The knowledge which is necessary to run some of the programs is provided by this manual. The manual also gives basic information about programs which do require one semester of Fortran programming.

Appendices Al-A4 give a list of the data analysis programs available in each package.

Guide to Computer Program Packages

The BMD package ${ }^{7}$ contains 76 programs which cover most of the widely used statistical analysis techniques in research. The programs are for the most part not difficult to run once the student has run a few programs. This is the main data analysis package available in the United States today. Most computing centers where social research is carried out will have the BMD package of programs available. The most widely used BMD programs are abstracted in Appendix A.

SPSS ${ }^{2}$ is a statistical package which is similar in purpose to the BMD programs but provides the operator with a greater amount of flexibility in organizing data.

[^0]IMSL ${ }^{3}$ is a large number of subroutines which cover many areas other than statistics. These programs are subroutines which means that by themselves one cannot feed directly into them. Generally at least one semester of Fortran programming is necessary to use these. The package $i .:$ becoming available at many zomputer centers.

SAS ${ }^{4}$ package contains many programs which are among the most typical types of analysis problems. The advantage of this package is that many different types of analysis may be performed with only one submission of the data deck. This package is not available at C.U.

The IBS programs ${ }^{5}$ are programs developed at the University of Colorado. These programs supplement several of the BMD programs, but also contain other ad hoc programs.

LER programs ${ }^{6}$ are a set of programs which have been developed by members of the Laboratory of Educational Research to meet special needs which are not available from other packages.

> SYSTEMS CARDS
> (PROGRAM ACCESS)

A brief outline of how to access each of the packages at the University of Colorado is given in Appendix C.

Figure 1 is an example, using the BMD package, illustrating the systems ${ }^{7}$ cards in more detail.
${ }^{3}$ IMSL LIB 3., Ed 1 CDC 6200/64/65/66/7600, For 2.3.
${ }^{4}$ Statistical Analysis System, North Carolina State University, Dept. of Statistics, Raleigh, North Carolina.
${ }^{5}$ Institute of Behavioral Science, University of Celorado, Boulder, Colo.
${ }^{6}$ Laboratory of Educational Research, University of Colorado, Boulder, Colo.
${ }^{7}$ Systems cards will differ among various computer centers, the control cards will not.

Figure 1. Outline of Card Deck for BMD Programs.

Use an orange colored card with all square corners for the job card. This is the only place this color and shape card may be used in the deck.

Column 1: Delivery Code
Regardless from where the program is submitted, this code indicates where it and the associated output will be returned. The delivery codes are given in Appendix B.

Columns 2-7: Identification
This is your identification for your specific program. It must occupy at least 3 spaces and not more than six. Usually you will use your last name or some abbreviation of it, but the only rule you really need to follow is that the first punch (in Column 2) must be a letter. The rest can be letters or numbers. Following the last letter or number of your identification place a comma (,).

If there are lettered boxes for output at the delivery area chosen (Column 1) then your output will be in the box that corresponds to the first letter of your identification code (Column 2). If no lettered boxes are used all output is placed together.

Core Length. Following the comma, punch a C with the field length number immediately following. This is a base 8 number which has been divided by 100. See Appendices for field lengths for BMD and IBS programs. Contact the computer center for field lengtns for other packages (443-2211, extension 6563). A comma (,) immediately follows the last number in the core length.

Time. After the comma, place a T followed by the maximum amount of time you expect the program to tak:. This number is in base 8 and is divided by 10. For most class problems T2 is sufficient. T2 will give you 16 seconds of computer time.

You may punch anything you like for identification purposes ori the rest of the card.

Job Card Example: Column: $1 \begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
$N \quad F \quad R \quad D \quad D \quad C \quad 450$, $\quad 12$.
$N=$ output will be delivered to computing center (see Appendix B for delivery codes)
$F=$ output will be put in box F.

Accourit Card

Columns 1-8:
Punch the word ACCDUNT in column 1-7 follwed by a comma in Column 8.

Using a Sub-Account Number
Starting in Colum 9 punch your account number followed by two commas and then the subaccount number followed by a period.

Account Card Example (with subaccount):

Colums: $1 \begin{array}{lllllllllllllllllllllllllllllll}2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$

A101A = Account number
DS00 = Subaccount number
If a subaccount number is not to be used, starting in Column 9 punch your account number followed by a period.

Account Card Example (without subaccount);

$$
\begin{array}{lcccccccccccccc}
\text { Columns: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
& A & C & C & 0 & \cup & N & T & , & C & 6 & 1 & 0 & B & .
\end{array}
$$

How to Call BMD Programs

To get soecific BMD progrums fill inthe 3 blank spaces (columns 17-19) in $C A L L(B M D(B M D=B M D \ldots)$ with the specific program name. To call BMD 01D, punch

$$
\operatorname{CALL}(B M D(B M D=B M D O 1 D)
$$

Note: The firsi character in $01 D$ and many other BMD programs is a zero, not the letter 0 .

7/8/9 Card

This is called an end-of run card which has the numbers 7, 8, and 9 all punched in Column 1. To punch this card, depress simultaneously the keys "Num" and "Mult Pun" and consecutively punch 7,8, and 9 in Column 1.

Program Cards

These are the actual BMD program cards as explained in the BMD manual. The first card is the PROBLM card and the last is the FINISH card.

6/7/8/9 Card

This is an end of information card which has $6,7,8$ and 9 punched in Column 1. Use the same method as described for the $7 / 8 / 9$ card. This is the last card in every deck that you submit.

VARIABLE FORMAT CARD(S) IN BMD PROGRAMS

The format card is one of the control cards and it specifies just which data and its location will be used in the analysis. This card allows the user to arrange information on the data card to his convenience, and hence gives the canned programs much more generality and flexibility than would otherwise be possible.

Terminology

A variable is a set of values -- such as IQ scores, age, sex, or test scores which appear in specified columns on the data cards.

A field is \mathfrak{z} group of consecutive columns in which data appears on a data card. A field may be occupied by a variable, blanks, or information to be ignorea.

Floating point (F) fields are fields in which a decimal point may occur. Letters would not have decimal points and thus could not be designated by F fields. A and I are other types of fields. Most BMD programs require F-type format cards.

Skip fields (X) are fields which are not to be read by the computer. These may be blank or may contain information not required for the program.

The variable format card begins with a left parenthesis in Column 1 and ends with a right parenthesis. The field designations are separated by commas. The writing of variable format cards is most easily accomplished by using examples.

F fields are designated by keypunching the letter F, followed by the number of columns in the field, followed by a decimal point, followed by the number of spaces from the right-hand edge of the field the decimal point is.

Example:

Field Code	Number as punched	Number as would be read by computer
(F3.0)	231	231
(F3.0)	23	23
(F3.1)	231	23.1
(F3.2)	231	2.31
(F3.3)	231	.231

Skip fields are designated by keypunching the number of columns to be skipped followed by the letter "X."

Example:

Field Ccde	Number as Punched	92345
$(2 X, F 3.0)$	Number as would be read by computer	
$(3 X, F 2.1)$	92345	4.5
$(1 \times, F 2.0,2 X, F 1.0)$	923456	23 and 6
$(1 X, F 2.1,1 X, F 1.0)$	923456	2.3 and 5

Repeated identical fields may be represented by preceding the field designation by the number of fields.

Example:

Field Code	Number as Punched	Number as would be read by computer
(3F7.0)	823	8,2, and 3
(1X, F2.0, 2F2.1)	823456789	23, 4.5, and 6.7
(F1.0, 2F3.1, F2.2)	823456789	8, 23.4, 56.7, and . 89

For further examples see pages 23-24 in the BMD manual or any introductory Fortran Programming text.

Exercise

Suppose you have age in Columns 4 and 5 , Verbal IQ score in Columns 10 , 11, and 12, Nonverbal IQ score in Columns 13, 14, 15, and wages (dollars and cents per hour) in Columns 70, 71, and 72. Write the variable format card to instruct the computer to read these four variables. (Soe the bottom of the following page for the answer.)

Miscellaneous Comments

Coding

1. Zero and 0

The number zero and the letter are two different and noninterchangeable symbols in computer work. To keep them straight in coding a ' q ' is used to represent the letter and a ' 0 ' is used to represent zero.

Example:
PRPBLM
2905.3

2. Punching Numbers in Specified Fields

Whenever you are given more columns than necessary for your problem's parameters be sure the number is punched in the farthest column to the right (right justified). If you do not right justify, blank columns to the rigit will be read as zeros thus increasing the size of the number. Example:

If the number of subjects is to be punched in Columns 7-12 and you have 56 subjects, the number should be punched as follows:
$\begin{array}{lllllll}\text { Column } & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
56

If you punched it like this:

Column $\begin{array}{lllllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$
56
it would mean there were 560 subjects.

Transgeneration (BMD)

At times the data which is on a computer card is not quite in the form one needs. Some of the data might have to be combined in some form before analys is takes place. For example, you might have pre and post scores and want to do the analysis on the gains between the two tests. In such circumstances the transgeneration (BMD only) option may be useful. The types of transgeneration
possible depend on the individual program but a complete list is given on pages 17-19 of the BMD manual.

Example: Difference between Pre and Post tests.
Given that the pretest is punched first and the posttest next on your data card, you can create a third variable--post minus pretest by using code \#12. Code 12 is $X_{i}-X_{j}=X_{k}$.

Since the pretest is to be subtracted from the posttest, $\mathbf{i}=2$ (because the posttest is the second variable on the data card) and $j=1$ (because the pretest is the first variable on the data card). $K=3$ in this case which creates a new variable for each subject, that of post minus pre test score. Now there are 3 variables (pre, post and post minus pre) for every subject using Code $12\left(x_{2}-x_{1}=x_{3}\right)$. The transgeneration card would thus read:

(If you wanted the pre minus post test score you would set $\mathfrak{i}=1, j=2$, and $k=3$ given $x_{1}-x_{2}=x_{3}$).

If one had two scores he needed to combine, he could accomplish this using transgeneration 11. Suppose of the 25 variables specified on the variable format card, one wished to add variables 4 and variable 22 . The following trans generation card would accomplish this, the total of variables 4 and 22 being labelled variable 26.

TRNGEN_2611__4__._-22

The particular transgeneration codes vary among the BMD programs (see Appendix D or the BMD manual in this regard).

Appendix A

Index of Programs

International Mathematics and Statistical Library (IMSL, this is only a partial listing of the programs)

Balanced incomplete block design
Latin square analysis
Newman-Keuls multiple comparison tests
Frequency tables (1 and 2 way)
Descriptive data
Variance and covariance computations
Geometric and harmonic means
Contrast estimates and sums of squares
Analyze 2-way classification design data
Tally observations into 1 or 2-way frequency and table

BMD Series

Programs available include: (Required field length, in octal, is indicated following each program description).

Class D - Data Description and Tabulation

01 Simple data description 410
02 D Correlation with transgeneration 610
030 Correiation with item deletion 530
04D Alphanumeric frequency count 650
05D General plot including histogram 650
06 D Description of strata 650
09D Cross-tabulation, incomplete data 640
Class M - Multivariate Analysis
$01 M$ Principal component analysis 640
03M Factor analysis 650
04 M Discriminant analysis for two groups 610
05M Discriminant analysis for several groups 630
06M Canonical analysis 470
07 M Stepwise discriminant analysis 645
Class R - Regression Analysis
$01 R$ Simple linear regression 620
$02 R$ Stepwise regression 600
03R Multiple regression with case combinations 610
04 R Periodic regression with harmonic analysis 630
05R Polynomical regression 410
Class S - Special Programs
02 S Conțingency tadle analysis 660
09 S Transgeneration 520
Class T - Time Series Analysis
$02 T$ Auto covariance and power spectral analysis 520
Class V - Variance Analysis
$01 V$ Analysis of variance for one-way design 643
02 V Analysis of variance for factorial design 650
05V General linear hypothesis 630
07 V Multiple range tests 560
08 V Analysis of variance 653

IBS Programs
The following list replaces the list in the IBS User's Manual. CPD's for these programs can be found in the card file in Room 4, Building 1.

Number	Name	Field Length
202*	Primary Data Analysis	610
203*	Biserial/Point Biserial Correlation	610
205	Pearson Correlation I	620
207	Tetrachoric Correlation	660
208	Gamma Statistic	640
209	t-test I	630
210*	t-test II	620
211	Mann-Whitney U-test	610
214	Multiple Regression I	570
218	Pre-Anova Data Checking	540
219*	ANOVA I	660
218A*	ANOVA II	710
220	One-way ANOVA I	630
221*	ANOVA III	700
222*	ANOVA IV	370
225	Multivariate ANOVA	570
226*	Discriminant Analysis	650
230*	Pearson Correlation II	750
235	Scale Scoring	750
244	Multivariate Cross Classification	630
248	Intraclass Correlation	770
250*	Multiple Regression II	670
251	Ill-Conditioned Matrix Analysis	620
252*	Stepwise Regression	570
253	Canonical Analysis	520
255*	One-Way Analysis of Covariance	470
260	Factor Analysis	760
270	Effect Parameters for Dichotomous Attributes	320
271	Interaction Means Program	310
301	Missing Data Recoding	230
302*	Random Data Generation	640
303	Z-score transformation	630
304	Rank-ordering transformation	500
305	Data Generation and Repunching II	5700
312	Wilcoxon Matched-pairs Signed-rank test	330
313	Difference Program	270
321	Spearman Rank Correlation	530
330	One-way Trend Analysis	220
331	Trend Analys is	500
333	One-way ANOVA II	560
340*	One-way Frequency Distributions	750
$341 *$	Nominal Data Recoding	670
342*	Nominal Data Stacking	330
343*	Two-way Contingency Tables	1000
345	Frequenc! Distribution	630
345A	Frequency Distribution r'	560
370	Blocking Program	310

The column containing field lengths for the various programs is to be punched in Columns 53-58 (right adjusted) of the job card. An asterisk following a program number denotes that the program is on the IBS common file.

Appendix B

Delivery Codes
Code Location CommentsBBusiness Building*O-5 M-F
C
KetchumD
Denver Center*EEngineering Center*8-12 p.m. M-Th 8-5 F
F
LASP*
Muenzinger
I
IBS*
PSTY
0
Physics8-5 M-FMedical Center*
Colorado Springs*
Metro State*
Educ. Annex
Contact Operations Manager for a more exact schedule
*These areas have an actual temninal All other areas are just pick up anddelivery areas.

Appendix C

Program Access

Bic

IMSL

```
Job Card
Account Card
RUN.
ATTACH, IMSL/UN=LIBRARY.
L\emptysetAD, LG\,IMSL.
EXECUTE.
7/8/9
(Program)
7/8/9
(data)
6/7/8/9
```

Job Card
Account Card
CALL (BMD (BMD=BMD
7/8/9
(Program)
6/7/8/9

SPSS

Job Card
Account Card
ATTACH, SPSS $/ U N=1072 \mathrm{P}$.
SPSS.
7/8/9
(Program)
6/7/8/9

IBS

Job Card
Account Card
REQUEST,IBS,HY. UQ1007 R@
CDPYN,O, XQT,IBS.
RETURN,IBS.
XQT (LC $=100000$)
7/8/9
REWIND(IBS)

IBS .., IBS
7/879
$\operatorname{RUN}(G)$
7/8/9
(Program)
6/7/8/9

Appendix D

Fortran Program

Job Card
Account Card
RUN.
LG8.
7/8/9
(Program)
7/8/9
(Data)
6/7/8/9

Run from Binary Deck
Job Card
Account Card
7/8/9
(Binary Deck Program)
6/7/9
(Data deck)
6/7/8/9

LER Tape

Job Card (include a MI)
Account Card
REQUEST,LERT,HI. UQ1023 R
REWIND, LERT.
CDPYN,O,LER,LERT.
RETURN,LERT.
LER, $L C=40000$.
7/8/9
REWIND,LERT
7/875. $/$,LERT
7/879
(Data)
6/7/8/9

Line Count Changing

LERTAP Program
Job Card (include a M1, C770)
Account Card
REQUEST, NELSON,HY. FLS MT UQ 2211 R \emptyset
REWIND'NELSON.
COPYBF(NELSON,PART1,1)
COPYBF(NELSON, PART2,1)
REWIND,PARTI, PART2.
PARTI.
PART2.
7/8/9
[Lertap control cards]
[Your data deck]
6/7/8/9

With normal cards you are allowed $10,000_{8}$ lines of output. If you anticipate needing more make the following change:

When changing line count do not punch in any commas in the number and be sure the number is in base eight (8).

BMD: $\operatorname{CALL}(B M D(B M D=\ldots, 10000=$ \qquad .

SPSS SPSS,LC= \qquad
IBS XQT,LC= \qquad .

LER LER, LC= \qquad
FQRTRAN LGO,LC= \qquad
LERTAP. PART2, LC= \qquad .

 puncned cards (or cape! for input into other orosrams. Although nanv of the nrograms oriod de sore poiting features, it mav be desirainle to perform any extensive modifications aith the use of this nropran so timt t: data deck can be used directlv with little furtiner modification in a numer of otaer monfams.

Class V - Check ListProgramin	Andiyms 0: Variance fo: One-Way Desipn OIV	Anusa :as Factorial Design 02 V	intidyz:s Cl Conarianc. for Factoriad Denigr $03 v$	Analysis of Covariance with Multiple Covaria'es 04%	General Linear Hypothesis$05 \mathrm{y}$	Gerieral Linear Hypothesis with Contrasts 06 V	Mul:iple Range Tesis 078	Analybse tit Vastaz.ce$08 \mathrm{~V}$
Analubis of varnartee ciassifications	I	8	6	1	---	---	1	10
No. of levels sfeach anal. of var. classification	5000	999	999	99	-	---	100	999
Covaratea	0	0	8	35	59	59	-	-..
Unequal group mizes	yez	no	no	yes	yes	$y \in s$	yes	no
Iotal degrees of freejom in anova model	5000	18.000	1500	99	60	60	100	at least 5000
Replucates	20.000	999	999	999	no limit	9999	20,000	999
"Contrasts"	-.-	---	-.-	- -	57	99	-	--
Tape anput	yes							
Variable fermat cardy	10	5	5	10	5	10	10	9
Transgeneration carcio	9	1-special	64	99	60	99	9	--
Transgencration codes	01.10	01-10	01-14	01-17,21-24, 41	01-14	01-14	01-10	---
Case selertion feature	no	nos	no	yes	no	no	no	no
Data labt	---	---	---	yes	-	yes	-	---
Means by cells or groupz	yes	yes	---	yes	yes	$y \mathrm{es}$	yes	yes
Contraste	---	orthogonal	-**	*	yes	Yes	--*	---
Covariance matrix	-	...-	yes	y ys	*	yes	--	- -
Regression coeffi lipnts	---	-*-	yes	yes	yes	yes	---	---
Adjusted means or residuals	---	-.-	yes	yes	-..	yes	yes	yes
Analysis of variance table	yes	ves	$y \mathrm{es}$	yes	\cdots	---	yes	yes
Group names	-..	--.		ves	---	---	-..	--

[^0]: ${ }^{\text {Dixon, W.J. (ed.), BMD Biomedical Computer Programs, University of California }}$ Press, 1971.
 ${ }^{2}$ Statistical Packarge for the Social Sciences, NIE, N., et al., McGraw-Hill, 1970.

